If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+3x-1=0
a = 35; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·35·(-1)
Δ = 149
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{149}}{2*35}=\frac{-3-\sqrt{149}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{149}}{2*35}=\frac{-3+\sqrt{149}}{70} $
| 10t-4t+2t-t=7 | | w-2.2=4.26 | | 16x–8–9x=20+7 | | 52+7=m+19 | | 5/x=(x+1)/4 | | 5x+1x=12+7x | | p=1-(1+0.0075/0.0075))^15 | | (7x/4)-(3x-8)=11 | | 5x+3x-12=20 | | v+4.37=6.18 | | -6(g+12)=24 | | b/5-2=3 | | -9x+48=-2 | | y+-12=42 | | y+2.2=8.25 | | 6v+14=86 | | 82=2(7r-8) | | 5x+8–2x=26 | | 63=9(w-85) | | s/7=28 | | 14h+4h+3h-19h+4h=12 | | 28=0.2*x+0.027*x | | 8(b+3)=88 | | 184=8(2+7x) | | 195+3x=360 | | 3x+x=8–12 | | 16+5y=-11 | | 15=-3(2)2x | | -9x+48=21 | | 2x+26)+(x+32)=180 | | 77+4x=360 | | 72+5+4x=360 |